Simulating the Potential Effects of a Changing Climate on Black Spruce and Jack Pine Plantation Productivity by Site Quality and Locale through Model Adaptation

نویسندگان

  • Peter F. Newton
  • Tomas Lundmark
چکیده

Modifying the stand dynamic functional determinates of structural stand density management models (SSDMMs) through the incorporation of site-specific biophysical height-age equations enabled the simulation of the effects of increasing mean temperature and precipitation during the growing season on black spruce (Picea mariana (Mill.) BSP) and jack pine (Pinus banksiana Lamb.) plantation productivity. The analytical approach consisted of calculating future values of growing season mean temperature and precipitation rates under three emissions scenarios (no change (NC); B1; and A2), spanning three continuous commitment periods (2011–2040; 2041–2070; and 2071–2100), for three geographically separated sites throughout the central portion of the Canadian Boreal Forest Region (north-eastern (Kirkland Lake); north-central (Thunder Bay); and north-western (Dryden) Ontario, Canada), using the Canadian Coupled Global Climate Model (CGCM3) in conjunction with a geographic-referencing climatic surface model. These estimates were entered into the embedded biophysical equations in the SSDMMs in order to forecast emission-scenario-specific developmental patterns of plantations managed under a conventional density management regime by species and site quality (poor-to-medium and good-to-excellent) at each locale; from which stand development rates and associated productivity metrics over 75 year-long rotations were estimated and compared (e.g., mean sizes, volumetric, biomass and carbon yields, end-products, economic worth, stand stability, wood quality indices, and operability status). Simulation results indicated that black spruce plantations situated on both site qualities at the north-western location and on the lower site quality at the north-eastern location were negatively affected from the predicted increased warming and rainfall as evidenced from consequential declines in stand development rates and resultant decreases in rotational mean sizes, biomass yields, recoverable end-product volumes, and economic worth (A2 > B1). Conversely, black spruce plantations situated on both site qualities at the north-central location and on the higher site quality at the north-eastern location were minimally and positively affected under the A2 and B1 scenarios, respectively. Jack pine plantations situated on both site qualities at all three locations were negatively affected as evident by the reductions in stand development rates and rotational mean sizes, biomass yields, recoverable end-product volumes, and economic worth (A2 > B1). Collectively, these response patterns suggest that stand-level productivity under a changing climate will vary by species, site quality, geographic locale, and emission scenario, potentially resulting in a landscape-level mosaic of both negative and positive productivity impacts in the case of black spruce, and mostly negative impacts in the case of jack pine. As demonstrated, modelling stand-level responses to projected increases in thermal and moisture regimes through the modification of existing stand-level forecasting models, and accounting for divergent effects due to species, site quality, and geographic locale differences, is a viable and efficient alternative approach for projecting productivity outcomes arising from anthropogenic-induced changes in growing conditions. Forests 2016, 7, 223; doi:10.3390/f7100223 www.mdpi.com/journal/forests Forests 2016, 7, 223 2 of 25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterns of Cross-Continental Variation in Tree Seed Mass in the Canadian Boreal Forest

Seed mass is an adaptive trait affecting species distribution, population dynamics and community structure. In widely distributed species, variation in seed mass may reflect both genetic adaptation to local environments and adaptive phenotypic plasticity. Acknowledging the difficulty in separating these two aspects, we examined the causal relationships determining seed mass variation to better ...

متن کامل

Impacts of changing climate on the productivity of Norway spruce dominant stands with a mixture of Scots pine and birch in relation to water availability in southern and northern Finland.

A process-based ecosystem model was used to assess the impacts of changing climate on net photosynthesis and total stem wood growth in relation to water availability in two unmanaged Norway spruce (Picea abies) dominant stands with a mixture of Scots pine (Pinus sylvestris) and birch (Betula sp.). The mixed stands were grown over a 100-year rotation (2000-99) in southern and northern Finland wi...

متن کامل

Regulation of branch-level gas exchange of boreal trees: roles of shoot water potential and vapor pressure difference.

Effects of shoot water potential (Psi) and leaf-to-atmosphere vapor pressure difference (VPD) on gas exchange of jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) B.S.P.), and aspen (Populus tremuloides Michx.) were investigated at the northern edge of the boreal forest in Manitoba, Canada. Laboratory measurements on cut branches showed that net photosynthesis (A(n)) and me...

متن کامل

Occurrence of Density-Dependent Height Repression within Jack Pine and Black Spruce Populations

The objective of this study was to investigate the occurrence of density-dependent height relationships in jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana (Mill.) B.S.P.) populations. After assessing and ruling out the presence of consequential spatial correlation effects, the analysis consisted of analyzing the relationship between mean dominant height and initial planting de...

متن کامل

Evaluating the Ecological Integrity of Structural Stand Density Management Models Developed for Boreal Conifers

Density management decision-support systems (e.g., modular-based structural stand density management models (SSDMMs)), which are built upon the modeling platform used to develop stand density management diagrams, incorporate a number of functional relationships derived from forest production theory and quantitative ecology. Empirically, however, the ecological integrity of these systems has not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016